MATH4210: Financial Mathematics Tutorial 5

Jiazhi Kang

The Chinese University of Hong Kong
jzkang@math.cuhk.edu.hk

20 Feb, 2024

Convergence of r.v.s

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. X and $\left\{X_{n}\right\}$ are \mathbb{R} valued (sequence of) r.v.s.

almost everywhere

Definition (Convergence almost surely)

Denote by $X_{n} \rightarrow X$ a.s. (almost surely) if

$$
\mathbb{P}\left[\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right]=1
$$

meeswe

Definition (Convergence in Probability)

Denote by $X_{n} \rightarrow X$ in probability if for any $\rho>0$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \rho\right\}\right]=0
$$

Convergence of r.v.s

Proposition

$X_{n} \rightarrow X$ a.s. implies $X_{n} \rightarrow X$ in probability.

Proposition (admit)

$X_{n} \rightarrow X$ in probability implies there exists a subsequence of X_{n} converging to X a.s..

Definition (Convergence in Law (in Distribution))

Let F_{n} and F be the c.d.f. of X_{n} and X for all $n \in \mathbb{N}$. $X_{n} \rightarrow X$ in Law (in Distribution) if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for any $x \in \mathbb{R}$ where F is continuous at x.

Proposition (admit

$X_{n} \rightarrow X$ in probability implies $X_{n} \rightarrow X$ in Law.

Convergence of r.v.s.
4^{p} - comerzeme.
Definition
Given $p>0$, denote by $X_{n} \rightarrow X$ in L^{p} if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|^{p}\right]=0
$$

Question
(a). Show that $X_{n} \rightarrow X$ in L^{2} implies $X_{n} \rightarrow X$ in L^{1}.
(b). Show that $X_{n} \rightarrow X$ in L^{p} implies $X_{n} \rightarrow X$ in probability.

(a) | $X_{n} \xrightarrow{\mathbb{L}^{2}} x$ |
| ---: | :--- | if $\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left|x_{n}-x\right|^{2}\right]=0 \quad C V$ ais $\Rightarrow C V$ improbability.

Assume $X_{n} \xrightarrow{L^{2}} X$. So by definition:

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left|x_{n}-x\right|^{2}\right]=0
$$

Fix $n \in \mathbb{N}$.

$$
\mathbb{E}\left[\left|x_{r}-x\right|\right]=\mathbb{E}\left[\sqrt{\left|x_{n}-x\right|^{2}}\right] \quad \cdots \quad(*)
$$

Jensen's inequality:
For f convex, then $\mathbb{E}[f(x)] \geqslant f(\bar{E}[x])$. and for f concave, then $\mathbb{E}[f(x)] \leq f(\mathbb{E}[x])$
Recall the variame of $r . v$.

$$
\begin{gathered}
\operatorname{Var}(x)=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2} \geqslant 0 \\
\Rightarrow \mathbb{E}\left[x^{2}\right] \geqslant \mathbb{E}[x]^{2}
\end{gathered}
$$

$$
\text { So } \begin{aligned}
(x) & =\mathbb{E}\left[\sqrt{\left|x_{n}-x\right|^{2}}\right] \\
& \leq \sqrt{\mathbb{E}\left[\left|x_{n}-x\right|^{2}\right]}
\end{aligned}
$$

Sine $x(1) \sqrt{x}$ is continues.

So

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \sqrt{\mathbb{E}\left[\left|x_{n}-x\right|^{\prime}\right]} & =\sqrt{\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left|x_{n}-x\right|^{2}\right]} \\
& =0
\end{aligned}
$$

$$
>
$$

\square
(b) Fix $\rho>0 . n \in \mathbb{N}$.
$\mathbb{P}\left[\left\{\omega \in \Omega:\left|x_{n}(w)-x(w)\right|>\rho\right\}\right]$
Marker's inequality:
$=\mathbb{P}\left[\left\{\left|x_{n}-x\right| \geq \rho\right\}\right] \quad$ simplification

$$
\begin{array}{rl}
\forall k>0 & \mathbb{P}[\{|Y|>k\}] \\
& \leq \frac{1}{k} \cdot \mathbb{E}[|Y|] .
\end{array}
$$

$$
\begin{aligned}
& =\mathbb{P}\left[\left\{\frac{\left|x_{n}-x\right|^{p}}{Y} \geqslant \frac{\rho^{p}}{k}\right\}\right] \\
& \subseteq \frac{1}{\rho^{p}} \cdot \mathbb{M}\left[\left|x_{r}-x\right|^{p}\right]
\end{aligned}
$$

$\xrightarrow{n \rightarrow+\infty} 0$ sine $x_{n} \xrightarrow{p} x$

Brownian Motions

Question

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that for some constant $C>0, f(x)<e^{C|x|}$ for all $x \in \mathbb{R}$. Define

Show that

$$
u(t, x)=\frac{\mathbb{E}\left[f\left(B_{T}\right) \mid B_{t}=x\right)}{\text { rovelom }}=\frac{\mathbb{E}\left[f\left(B_{T}-B_{t}+x\right)\right]}{\text { deterministic }} .
$$

(a)

$$
\partial_{x} u(t, x)=\mathbb{E}\left[\frac{B_{T}-B_{t}}{T-t} f\left(B_{T}-B_{t}+x\right)\right]
$$

(b)

$$
\partial_{x}^{2} u(t, x)=\mathbb{E}\left[\frac{\left(B_{T}-B_{t}\right)^{2}+(T-t)}{(T-t)^{2}} f\left(B_{T}-B_{t}+x\right)\right]
$$

(a). $u(d, x)=\mathbb{E}\left[f\left(B_{T}-B_{t}+x\right)\right]$.

Recall that $B_{T}-B_{t} \sim N(0, T-t)$. So let $Y \sim N(0, T-t)$.
Then $u(x, x)=\mathbb{E}[f(Y+x)]$

$$
=\int_{\mathbb{R}} f(y+x) \cdot p_{Y}(y) d y
$$

Where P_{Y} is the pdf of $Y: \forall y \in \mathbb{R} \cdot R_{Y}(y)=\frac{1}{\sqrt{2 \pi(T-1)}} e^{-\frac{y^{2}}{2(T-1)}}$
Then: $\partial_{x} u(t, x)=\int_{\mathbb{R}} f^{\prime}(y+x) \cdot P_{Y}(y) d y$.

$$
=\frac{\left[f(y+x) \cdot \mathbb{R}_{Y}(y)\right]_{y \rightarrow-\infty}^{y \rightarrow+\infty}-\int_{\mathbb{R}} f(y+x) p_{Y}^{\prime}(y) d y}{\prod_{0}}
$$

Notice $P_{Y}^{\prime}(y)=\frac{1}{\sqrt{2 \pi(\tau-1)}} \cdot\left(-\frac{2 y}{2(T-x)}\right) \cdot e^{-\frac{y^{2}}{2(T-x)}}$

$$
=-\frac{y}{T \cdot t} \cdot P_{Y}|y|
$$

Therefore: $\partial_{x} u(t, x)=+\int_{\mathbb{R}} \cdot+\frac{y}{T-t} f(y+x) P_{Y}(y) d y$.

$$
\begin{array}{rlrl}
= & \frac{T}{F(y)}= & \int_{\mathbb{R}} F(y) P_{Y}(y) d y \\
=\mathbb{E}\left[\frac{Y}{T-A} f(Y+x)\right] & & =\mathbb{E}[F(Y)] \\
& F\left[(y)=\frac{y}{T-t} f(y+x)\right. \\
& \left.\frac{B_{T}-B_{t}}{T-t} f\left(B_{T}-B_{A}+x\right)\right] &
\end{array}
$$

(b) similarly, apply integration by part...

Greeks of Option
N is the cat of $N(0,1) \quad N(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 n}} e^{-\frac{y^{2}}{2}} d y$.
d_{1} (or d_{2}) one functions of stock mice.

$$
d_{1}(x)=\log (x / k)+(r+\sigma / /)(\pi-x)
$$

Question
Consider the European call option price at time t :

$$
\begin{aligned}
& C_{E}(t, x)=x N\left(d_{1}(x)\right)-e^{-r(T-k)} k N\left(d_{2}(x)\right) \\
& C_{E}\left(t, S_{t}\right)=S_{t} N\left(d_{1}\right)-e^{-r(T-t)} K N\left(d_{2}\right)
\end{aligned}
$$

where $d_{1}=\frac{\ln \left(S_{t} / K\right)+\left(r+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}$ and $d_{2}=d_{1}-\sigma \sqrt{T-t}$. Compute
(a) Delta: $\Delta=\partial_{x} C_{E}\left(t, S_{t}\right)$. Pho, Theta.
(b) Gamma: $\Gamma=\partial_{x}^{2} C_{E}\left(t, S_{t}\right)$ denote $\tau=T$ -
(a). $\partial_{x} d_{1}\left(s_{A}\right)=\frac{1}{\Gamma \sqrt{\tau}} \cdot \frac{1}{\alpha} \cdot \frac{\sqrt{x}}{s_{t}}=\frac{1}{s_{+} \sigma_{\sqrt{\tau}}}=\partial_{x} d z(x)$. And $\partial_{x} N\left(d_{1}\left(S_{1}\right)\right)=\partial_{x} d_{1}\left(S_{4}\right) \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{d_{1}\left(S_{1}\right)}{2}}$

So $\Delta=\partial_{x} C_{E}\left(t, S_{t}\right)$

$$
\begin{aligned}
& =N\left(d_{1}\left(s_{+}\right)\right)+S_{+} \cdot \partial_{x} N\left(d_{1}\left(s_{+}\right)\right)-e^{-r \tau} K \cdot \partial_{x} N\left(d_{2}\left(s_{+}\right)\right) \\
& =N\left(d_{1}\left(s_{+}\right)\right)+S_{t} \cdot \partial_{x} d_{1}\left(s_{1}\right) \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{d_{1}^{\prime}\left(s_{+}\right)}{2}}-e^{-r \tau} K \cdot \partial_{x} d_{1}\left(s_{+}\right) \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{d_{1}^{2}\left(s_{1}\right)}{2}} \\
& =N\left(d_{1}\left(S_{+}\right)\right)+\frac{1}{\sqrt{2 \pi}} \partial_{x} d_{1}\left(s_{4}\right)\left(S_{4} e^{-\frac{d_{1}^{2}\left(S_{1}\right)}{2}}-K e^{-r \tau} e^{-\frac{d_{2}^{2}\left(s_{4}\right)}{2}}\right) \\
& =N\left(d_{1}\left(S_{+}\right)\right)+\frac{1}{\sqrt{2 \pi}} d_{x} d_{1}\left(S_{1}\right) \cdot e^{-\frac{d_{1}^{\prime}\left(S_{1}\right)}{2}}\left(S_{+}-K e^{-r \tau} e^{-\frac{d_{1}^{\prime}\left(s_{1}\right)-d_{2}^{2}\left(S_{4}\right.}{2}}\right)
\end{aligned}
$$

Notice: $d_{1}^{2}\left(S_{1}\right)-d_{2}^{2}\left(S_{1}\right)$

$$
\begin{aligned}
& =\left(d_{1}+d_{2}\right)\left(d_{1}-d_{2}\right) \\
& =\sigma \sqrt{\tau} \cdot\left(\frac{2 \operatorname{los}\left(s_{1} / k\right)+2 r \tau}{\sigma / t}\right) \\
& =2 \log \left(s_{1} / / k\right)+2 r \tau \cdot
\end{aligned}
$$

Then: $S_{t}-K e^{-r \tau} \cdot e^{-\frac{d_{1}^{2}-d_{2}^{2}}{2}}=$

$$
\begin{aligned}
& =S_{t}-k \cdot S_{1} / k \\
& =0
\end{aligned}
$$

$$
\Rightarrow \Delta=N\left(d_{1}(S+1)\right.
$$

(b):

$$
\begin{aligned}
\Gamma=\partial_{x x}^{2} C_{E}\left(1, S_{t}\right) & =\partial_{x}^{\prime} \Delta^{\prime \prime} \\
& =\partial x N\left(d_{1}\left(S_{t}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{d_{1}^{2}}{2}} \cdot \partial_{x} d_{1}\left(S_{t}\right) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{d_{1}^{2}}{2}} \cdot \frac{1}{\sigma \sqrt{\tau} \cdot S_{t}} \\
& =P_{z}\left(d_{1}\right) \cdot \frac{1}{\sigma \sqrt{\tau} S_{t}} \text { where } P_{z} \text { is pol of } N(0,1)
\end{aligned}
$$

